Scientists discover key age-related biological shifts at 40 and 60 (2024)

Scientists discover key age-related biological shifts at 40 and 60 (1)By Hugo Francisco de SouzaReviewed by Susha Cheriyedath, M.Sc.Aug 16 2024

Scientists discover key age-related biological shifts at 40 and 60 (3)Study: Nonlinear dynamics of multi-omics profiles during human aging. Image Credit:tomertu/ Shutterstock

In a recent study published in the journal Nature Aging, researchers in Singapore and the United States conducted comprehensive profiling of a longitudinal cohort (n = 108) using next-generation multi-omics techniques to reveal the nonlinear dynamics of human aging. The study cohort comprised individuals residing in California between the ages of 25 and 75, followed up for up to 6.8 years (median = 1.7 years).

The study revealed that only 6.6% of molecular markers showed linear age-associated changes, whereas a substantial 81% exhibited nonlinear patterns, highlighting the complexity of the aging process. Molecular markers analyzed during the study revealed that human aging is not a linear process, with chronological ages of around 44 and 60 demonstrating dramatic dysregulation of specific biological pathways, such as alcohol and lipid metabolism during the 40-year transition and carbohydrate metabolism and immune regulation during the 60-year transition. These findings provide unprecedented insights into the pathways (both biological and molecular) associated with human aging and present a significant leap in identifying therapeutic interventions against age-associated chronic diseases.

a, The demographics of the 108 participants in the study are presented. b, Sample collection and multi-omics data acquisition of the cohort. Four types of biological samples were collected, and 10 types of omics data were acquired.

Background

Aging is defined as the time-related deterioration of physiological functions associated with health and survival. Decades of research have identified that these physiological changes strongly correspond with the risk and incidence of chronic diseases, including diabetes, neurodegeneration, cancers, and cardiovascular diseases (CVDs).

Recent research using next-generation, system-level, high-throughput omics technologies suggests that, unlike previously believed, aging is not a linear process. The study utilized techniques such as transcriptomics, proteomics, metabolomics, and microbiome analysis to uncover the complexity of aging at a molecular level. Specific chronological ages may serve as thresholds corresponding to significant nonlinear metabolism rates and molecular profile alternations. For example, both neurological diseases and CVDs are known to demonstrate substantial spikes in population-level prevalence at ~40 and ~60 years.

Unfortunately, despite this relatively novel knowledge, the literature has hitherto mainly investigated the biology of aging with the assumption that aging is a linear process. This approach has potentially masked mechanistic insights essential for developing therapeutic interventions against age-related diseases, hindering the quest for extended human lifespans and healthier old ages.

About the study

The present study aims to address this gap in the literature by using a battery of deep multi-omics profiling technologies to investigate the specific alternations in biological and molecular pathways associated with different adult age groups. The study was conducted on a cohort of healthy adult volunteers from California, United States (US), between the ages of 25 and 75. Participants were eligible for the study if they lacked a clinical history of chronic diseases, including anemia, CVD, cancer, psychiatric illness, or bariatric surgery.

Baseline data collection included a modified insulin suppression test, fasting plasma glucose (FPG) test, and hemoglobin A1C (HbA1C) test to establish participants' insulin sensitivity, diabetes, and average glucose levels, respectively. Furthermore, participants' body mass indices (BMIs) were recorded at study enrolment and follow-up.

"…5,405 biological samples (including 1,440 blood samples, 926 stool samples, 1,116 skin swab samples, 1,001 oral swab samples and 922 nasal swab samples) were collected. 135,239 biological features (including 10,346 transcripts, 302 proteins, 814 metabolites, 66 cytokines, 51 clinical laboratory tests, 846 lipids, 52,460 gut microbiome taxons, 8,947 skin microbiome taxons, 8,947 oral microbiome taxons and 52,460 nasal microbiome taxons) were acquired, resulting in 246,507,456,400 data points."

The battery of multi-omics tests comprised seven distinct evaluations, namely 1. transcriptomics (using RNA extracted from flash-frozen peripheral blood mononuclear cells [PBMCs]), 2. proteomics (using liquid chromatography of participants' plasma samples), 3. untargeted metabolomics (using plasma-derived metabolite profiles generated via reverse-phase liquid chromatography [RPLC] and hydrophilic interaction chromatography [HILIC]), 4. cytokine data (derived from Luminex-based multiplex assays of participants' plasma), 5. plasma lipidomics (using differential mobility spectrometry), 6. microbiome analysis (using genomic sequencing of participants' stool, skin, oral, and nasal samples), and 7. standard clinical laboratory tests (metabolic panel, complete blood counts, kidney and liver panels, high-sensitivity C-reactive protein [hsCRP], etc.).

Study findings

The included study cohort comprised 108 participants (51.9% female) between the ages of 25 and 75 (median 55.7). Participants were sampled for multi-omics data every 3-6 months (median follow-up period = 1.7 years, maximum = 6.8 years). This rigorous longitudinal analysis allowed the researchers to capture both linear and nonlinear molecular changes associated with aging. Mulit-omics findings highlighted the importance of nonlinear approaches in characterizing biological aging by revealing that of the investigated molecules, only 6.6% demonstrated linear age-associated changes, while 81.0% demonstrated nonlinear patterns.

a, Pathway enrichment and biological functional module analysis for crests 1 and 2. Dots and lines are color-coded by omics type. b, The overlapping of molecules between two crests and three clusters.

Importantly, these molecular patterns were surprisingly consistent across all seven multi-omics investigations, suggesting that these changes have deep biological implications. A trajectory clustering analysis approach employed to group molecules by their temporal similarity revealed the presence of three distinct clusters (clusters 5, 2, and 4).

The first comprised a mRNA and autophagy-associated transcriptomics module exhibiting a dramatic increase around 60 years of age. This pathway maintains cellular homeostasis and demonstrates increased aging-related disease risk. The second comprises a phenylalanine metabolism pathway encapsulating serum/plasma glucose and blood urea nitrogen, both of which substantially increase at around age 60, highlighting reduced kidney function and increased CVD risk. The third includes pathways related to caffeine metabolism and unsaturated fatty acid biosynthesis, critical to cardiovascular health.

To better elucidate peaks in microbiome and molecule dysregulation across the adult aging process, researchers employed a modified Differential Expression Sliding Window Analysis (DE-SWAN) algorithm. Analysis findings highlight the presence of two prominent peaks (crests) corresponding to ~40 and ~60 years, consistent across the full range of multi-omics profiles (particularly proteomics). Modules in the first peak were found to be strongly correlated with alcohol and lipid metabolism. In contrast, those in the second peak were strongly correlated with immune dysfunction, kidney function, and carbohydrate metabolism.

Conclusions

The present study highlights the highly nonlinear nature of the biological and molecular processes associated with human aging, as demonstrated by seven distinct multi-omics investigations. The study is noteworthy in that it additionally identifies specific patterns in the aging process that dramatically increase at around 40 and 60 years, corresponding to biologically meaningful dysregulation of alcohol and lipid metabolism (at ~40) and immune dysfunction, kidney performance, and carbohydrate metabolism (at ~60).

"These comprehensive multi-omics data and the approach allow for a more nuanced understanding of the complexities involved in the aging process, which we think adds value to the existing body of research. However, further research is needed to validate and expand upon these findings, potentially incorporating larger cohorts to capture the full complexity of aging."

Journal reference:

Scientists discover key age-related biological shifts at 40 and 60 (2024)

References

Top Articles
Medical Assistant, Pulmonary and Critical Care Department in Lahey Medical Center, Burlington at Beth Israel Lahey Health
Orlovsky ranks the best NFL QBs in seven different traits: Who makes each top-10 list?
Funny Roblox Id Codes 2023
Golden Abyss - Chapter 5 - Lunar_Angel
Www.paystubportal.com/7-11 Login
Joi Databas
DPhil Research - List of thesis titles
Shs Games 1V1 Lol
Evil Dead Rise Showtimes Near Massena Movieplex
Steamy Afternoon With Handsome Fernando
Which aspects are important in sales |#1 Prospection
Detroit Lions 50 50
18443168434
Newgate Honda
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
Grace Caroline Deepfake
978-0137606801
Nwi Arrests Lake County
Justified Official Series Trailer
London Ups Store
Committees Of Correspondence | Encyclopedia.com
Pizza Hut In Dinuba
Jinx Chapter 24: Release Date, Spoilers & Where To Read - OtakuKart
How Much You Should Be Tipping For Beauty Services - American Beauty Institute
Free Online Games on CrazyGames | Play Now!
Sizewise Stat Login
VERHUURD: Barentszstraat 12 in 'S-Gravenhage 2518 XG: Woonhuis.
Jet Ski Rental Conneaut Lake Pa
Unforeseen Drama: The Tower of Terror’s Mysterious Closure at Walt Disney World
Ups Print Store Near Me
C&T Wok Menu - Morrisville, NC Restaurant
How Taraswrld Leaks Exposed the Dark Side of TikTok Fame
University Of Michigan Paging System
Dashboard Unt
Access a Shared Resource | Computing for Arts + Sciences
Speechwire Login
Healthy Kaiserpermanente Org Sign On
Restored Republic
Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
Jambus - Definition, Beispiele, Merkmale, Wirkung
Ark Unlock All Skins Command
Craigslist Red Wing Mn
D3 Boards
Jail View Sumter
Nancy Pazelt Obituary
Birmingham City Schools Clever Login
Thotsbook Com
Funkin' on the Heights
Vci Classified Paducah
Www Pig11 Net
Ty Glass Sentenced
Latest Posts
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 5799

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.